316 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths

    Get PDF
    In 1982 Thomassen asked whether there exists an integer f(k,t) such that every strongly f(k,t)-connected tournament T admits a partition of its vertex set into t vertex classes V_1,...,V_t such that for all i the subtournament T[V_i] induced on T by V_i is strongly k-connected. Our main result implies an affirmative answer to this question. In particular we show that f(k,t) = O(k^7 t^4) suffices. As another application of our main result we give an affirmative answer to a question of Song as to whether, for any integer t, there exists an integer h(t) such that every strongly h(t)-connected tournament has a 1-factor consisting of t vertex-disjoint cycles of prescribed lengths. We show that h(t) = O(t^5) suffices.Comment: final version, to appear in Combinatoric

    Edge-disjoint Hamilton cycles in graphs

    Get PDF
    In this paper we give an approximate answer to a question of Nash-Williams from 1970: we show that for every \alpha > 0, every sufficiently large graph on n vertices with minimum degree at least (1/2 + \alpha)n contains at least n/8 edge-disjoint Hamilton cycles. More generally, we give an asymptotically best possible answer for the number of edge-disjoint Hamilton cycles that a graph G with minimum degree \delta must have. We also prove an approximate version of another long-standing conjecture of Nash-Williams: we show that for every \alpha > 0, every (almost) regular and sufficiently large graph on n vertices with minimum degree at least (1/2+α)n(1/2 + \alpha)n can be almost decomposed into edge-disjoint Hamilton cycles.Comment: Minor Revisio

    A Dirac type result on Hamilton cycles in oriented graphs

    Full text link
    We show that for each \alpha>0 every sufficiently large oriented graph G with \delta^+(G),\delta^-(G)\ge 3|G|/8+ \alpha |G| contains a Hamilton cycle. This gives an approximate solution to a problem of Thomassen. In fact, we prove the stronger result that G is still Hamiltonian if \delta(G)+\delta^+(G)+\delta^-(G)\geq 3|G|/2 + \alpha |G|. Up to the term \alpha |G| this confirms a conjecture of H\"aggkvist. We also prove an Ore-type theorem for oriented graphs.Comment: Added an Ore-type resul

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM

    Perfect packings with complete graphs minus an edge

    Get PDF
    Let K_r^- denote the graph obtained from K_r by deleting one edge. We show that for every integer r\ge 4 there exists an integer n_0=n_0(r) such that every graph G whose order n\ge n_0 is divisible by r and whose minimum degree is at least (1-1/chi_{cr}(K_r^-))n contains a perfect K_r^- packing, i.e. a collection of disjoint copies of K_r^- which covers all vertices of G. Here chi_{cr}(K_r^-)=r(r-2)/(r-1) is the critical chromatic number of K_r^-. The bound on the minimum degree is best possible and confirms a conjecture of Kawarabayashi for large n

    Proof of the 1-factorization and Hamilton decomposition conjectures IV: exceptional systems for the two cliques case

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D≥2⌈n/4⌉−1D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we prove results on the decomposition of sparse graphs into path systems. These are used in the proof of (i) and (ii) in the case when GG is close to the union of two disjoint cliques.Comment: We originally split the proof into four papers, of which this was the fourth paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 37 page
    • …
    corecore